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Small magnetic terms in the molecular Hamiltonian are treated in a SCF perturbation
scheme, using H.F. molecular orbitals as basis; some approximations are discussed and com-
pared. In particular, the paramagnetic contributions to the susceptibility and nuclear shielding
constants for LiH and N, are investigated and discussed.

Es werden verschiedene Naherungen fir Stérungsrechnungen, kleine magnetische Terme
eines molekularen Hamiltonoperatores betreffend, im H. F.-Schema diskutiert, speziell die
Rechnungen fiir LiH- und N,-Molekiile, die sich auf den paramagnetischen Teil der Suszepti-
bilitdt und die Abschirmungskonstante fiir verschiedene Kerne beziehen.

Des approximations différentes qu’on peut choisir dans les calculs perturbatifs des éléments
petits d'une Hamiltonienne moléculaire, sur une basis de Hartree-Fock, viennent examinées
et comparées. En particulier, on présent les calculs rélatifs & la partie paramagnétique de la
susceptibilité et de la constante d’éeran nucléaire des molécules LiH et N,.

1. Introduction

The evaluation of molecular observables, associated with magnetic inter-
actions, has been the subject of many papers appeared in rather recent years.
Different methods, proposed by various authors, have sometimes enabled one to
obtain results which fairly fit experimental data [2—6, 10—14].

Due to the smallness of the Hamiltonian terms corresponding to magnetic
interactions, it seems very natural to approach the problem from a perturbative
point of view. Our knowledge of molecular wave functions, however, is far from
being complete. As a matter of fact, in most cases, we have a wave function for
ground states, approximated by a Slater determinant, built up with SCF MO LCAO
orbitals, and essentially for small molecules. Perturbation theory in the SCF
scheme is well known, and has been reconsidered, by several authors, in versions
often only formally different [1, 7, 10, 15]. In this paper we shall investigate some
approximations of the above theory, and compare the results on the basis of two
simple examples (LiH and N, molecules).

11, Theory

Let us assume that we have solved the unperturbed H.F. molecular problem,
so that we dispose with a set of orthonormal one-electron orbitals, @ (j =
1,2, ..., M), the eigenstates of the H.F. Hamiltonian operator f©:

FOPD = O P

Such a set of orthonormal functions will be exploited as basis for a perturbation
treatment of molecular problems.

In the presence of perturbing fields, the molecular Hamiltonian can be written

as e O oy, )
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where #® is now the true Hamiltonian for the unperturbed molecular system,
and ', is the opsrator corresponding to a generic one-electron perturbation,
developable in terms of perturbation orders, so that we can write:
Hp=HD L #M 4 (2)
For the observables which this paper is interested in, we have:
Hop = AW+ F

2N
HD = 5 pj), A = z‘, ),
j=1 j=1
T A
B = %a(ﬂ-g r2-f >

7y 2 TR =
W =gl -7 ) T ( I- f> . H}.

Here H is the external magnetic field, i the magnetic dipole moment of the nucleus whose

>
nuclear magnetic shielding constant is to be calculated, & the orbital angular momentum
operator, I the unit dyadic and « = 1/137. The gauge was chosen in such a manner that the
external vector potential is zero at the nucleus which has the intrinsic magnetic moment7i.

In order to evaluate the magnetic observables we are interested in, we only
need to single out the second order terms from the follo wing expectation value of
the total energy:

)

As far as ¥’ is concerned, we shall assume that a single determinant wave
function is still a reliable approximation to the ground state of the molecule in the
presence of a perturbation, i.e. we put:

W= @N) T | @y(1) (L) ... By(2N) BN ||, ()

W =

where
== @;-O) -+ 6@7 s
6@; being the modification induced on the unperturbed molecular orbital @ by

the perturbation. The variations 6&; may be now expanded in terms of the unper-
turbed {@P} set, as follows:

M
0D; =Dy + 8 Dj = > (off + ) PP . (5)
I=N+1
(The upper indices indicate the order of perturbation.) The single determinant 4)
is equivalent to the following expansion in terms of Slater determinants:

p_yo .S ¥ (‘1)+c‘2)),,<z¢{(1oc)...(Nﬁ)%}-l—

j=1 l=N+1
N N M M
22 S S ket | p DO 4 (®
1 EST 1=N%1 ml ) (k)

The notation used should be self-evident. It may be noted, however, that the ex-
pansion (6) is simply another way of writing the determinant (4), so that it should
not be confused with a configuration interaction expansion.

By substituting Eq. (6) info the second order terms from Eq. (3), we get the
following expression for W®, explicitly in terms of ¢ only:
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N N M
W@ =2 5 (@O | h® [P —23 S (o — &) ¢ o +
=1 j=11=N+1
N M
+43 3 of PP | hD [P +
j=1l=N+1
N N M M
+23 3 3 3 dPAR@POR 0PI — (PO | oL B, (7)

§=1 k=1 l=N+1m=N-+1
where

(B9GP | §O PP = jj@«» YOO (1) @O (2) BV (2) dr, dr, .
T1p

[Eq. (7) has been written down for the case where the perturbation Hamiltonian
AW is a purely imaginary operator.]

In a rigorous perturbation SCF treatment, the coefficients are, of course,
affected by the changes induced in the H.F. electronic potential by the ‘external’
perturbing fields. Some approximations are, however, noteworthy, and this paper
is particularly concerned with these latter.

First order perturbation theory formally gives for the ¢{P*:

(PO l fo 1 @5@)

o = 2 — e (8)
where
fO = B0 | g0 9)
M
PONPICNE IS ) ngig’g(z) BO(2) - dr, B (1) —
k=1 m=N+ T1a
—JW®ww%mwm] (10)

Obviously Eq. (8) is not an explicit definition of ¢ff’, since the g® operator
depends on all coefficients ¢{}, but is, nevertheless, a useful working formula. If
Eq. (8) is satisfield, Eq. (7) transforms simply into

N N M
WO =2 3 @0 RO |00y 42 5 S AP @A (0P ()
j=1 7=1 [=N+1

that is a well known result in perturbation theory given by many authors (e.g. see
ref. [107).

STEVENS et al. [10] propose and discuss two approximate versions of the ‘exact’
calculation, wich we would like to reexamine and compare with other ones also
possible.

A first version investigated in [0} completly neglects the changes induced in
the H.F. potential by the perturbation; Eq. (8) then leads to

(DO | B | B0y
?-ﬁﬁﬁL, (12)
and these are substituted into Eq. (11).

Actually Eq. (11) has been obtained in the assumption that the ¢(’s satisfy
Eq. (8). A different way to verify the relative importance of the ehanges induced
1n the TL.F. potential is to substitute the ¢f}’s, given by Eq. (12), into Eq. (7).

* Ag an alternative way to deduce Eq. (8), one can make W® stationary with respect to
variations of the ¢{}’.
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This leads to the following expressions for the isotropic part of the magnetic
susceptibility and nuclear magnetic shielding tensors (paramagnetic contribution
only):

ALY

. o (PO ZLa |00 -

7=1 [=N-+1 ) i

O Py Q]
S ORI wapap o) - @p agiopam) o

x(DaI’) = — %

k=1 m=N+1

Y u (00|20 2,

opar) =0y Z : (0) __ {0) {<@§O)[ 3 ]@§‘O)> -
iFl=F+1 & & r
|
© | 2% | pO
I & <®m_ ks o O BO | BO HO © BHO | BHO HO
—,Zlmgwl EONSO (PP DY | DY DY)y — (DY D) | DY D¢, (14)

where y, = & A" &% a3, /" being Avogadro’s number, and ¢, = § &2 The external

magnetic field I_;; lies along the z-axis, perpendicular to the moslscular bond axis (z).

II1. Results and Discussion

The results collected in column IT of the table, have been obtained by means
of Eq. (13), (14), and are to be compared with those of columns I and V. Column I
shows the results obtained by substituting the approximate value for cff, Bq. (12),
into Eq. (11) according to Ref. [10], while in column V the results of the ‘exact’
caleulation are reported. Our approximation seems to give results fairly improved
with respect to ones in column T, although they are still too low.

A second version investigated in [10] involves less drastic approximations;
now the H.¥. potential change is partially taken into account by retaining in
HEq. (10) the terms in the summation corresponding to & = 4, m = [. (In accordance
with Ref. [70], we shall refer to this approximation as ‘neglecting off-diagonal
elements’). Eq. (8) now gives:

" (@9 |10 a9)
Gy = (0 — ®) + (@0 o0 | 503P) — (@0 00 | 6P )] -
By this approximation in conjunction with Eq. (7) we find results definitely
improved and very close to the ‘exact’ version ones (columns ILI, IV).

As far as we know, there is not any evaluation of the magnetic observables of
N, molecule, carried out in the perturbative SCF scheme. We have, therefore,
extended the calculations to this molecule, in order further to investigate the
kinds of approximations discussed in eonnection with LiH molecule. Our results
for N, are too collected in table, and seem to confirm those obtained for LiFH. The
most noteworthy difference among the results for N, and TiH is to be found in the
remarkable diversity of accuracy for the values of susceptibility and nuclear
shielding constant. As a matter of fact, a rather good estimate of the paramagnetic
contribution to the shielding constant is associated with a poor prevision in the
analogous contribution to the susceptibility. Such a noticeable diversity of accu-
racy is likely due to the fact that the basis set used for N, is too restricted, and
weighs, therefore, in an exceedingly different manner, operators associated with
different observables.

We may also point out that the approximation which neglects the H.F. field
modification, in the version presented in this paper, gives a different fraction of

(15)
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Table
I II I v v VI

Calculation H. F. field H. F. field Off-diag. Off-diag. Exact Experimental

perturb. perturb. elements elements calculation value

neglected neglected neglected neglected

(ref. [10]) (this paper) (ref. [10]) (this paper)
ypar-10%  LiHs 6.29 9.66 11.16 12.75 13.10 12.71F 0.04¢
(c.g.8. Npe 6.76 15.45 16.02 1713 17.82 30.3¢
units)
—Opar-108 Li*He 7.56 11.87 14.38 17.03 17.63 18.7F1.24

N, 158.7 263.2 383.4 438.8 459.5 482.34

2 The calculations on LiH were performed using Ransir’s BLMO basis set [8], and the
following = basis [10]: 2p = (1i), 2 = 2.53; 83p & (Li), z = 0.7057; 2p 7 (H), z = 0.91; 3d = (Li),
z = 0.811.

v N, calculations were performed using the minimal set of RansiL with Slater orbital
exponent (SAMO) [8, 91.

¢ Li* means that the nuclear magnetic shielding constant calculated is that of Li nucleus.

4 See ref. [10]. ¢ See ref. [4, 6].

the ‘exact’ result as far as the two observables are concerned (see the table,
columns IT—YV). So, while in the case of shielding constant the approximation
gives about 609, this value arises to about 809, for the susceptibility. The latter
result seems to agree (within the limits of the very poor basis set chosen) with a
remark by Korger and KarpLus [5]; according to it, large enough errors are to be
expected, from neglecting H.F. field change, if low-energy excitations are domi-
nating: for the magnetic shielding constant the perturbation operator weighs
very heavily low-energy orbitals, making important the self-consistent correction.

Note added in proof. After our manuseript was sent for publication, we looked over a paper
by P. W. Lancrorr, M. Karpus and R. P. Hugst [J. chem. Physics 44, 505 (1966)] dealing
with a subjeet under many respects similar to that of our paper. The conclusions drawn by
these authors about atomic systems do not seem in contrast with ours.
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